

Sustainable Urban FUrniTURE: Tool design to perform environmental assessments in the green procurement framework

LCA factors report

Grant Agreement N.	LIFE1	4 ENV/ES/000703	Acronym	LIFE FUTURE					
Full Title		Sustainable Urban FUrniTURE: Tool design to perform environmental assessments in the green procurement framework							
Funding scheme	LIFE E	LIFE Environment and Resource Efficiency (2014)							
Start date of project	01/10	01/10/2015 Duration of project 30 months							
Project coordinator	AIMP	AIMPLAS							
Document Type	Working Document								
Document Title	D2.1. LCA factors report								
Authors	AIMF	PLAS							
	СО	Confidential, only for p Commission's Services	m (including the X						
Dissemination Level	PU	Public							
(mark with an ´X´ in the column to the far right)	PP	PP Restricted to other programme participants (including the Commission Services)							
	RE	Restricted to a group sp Commission Services)	pecified by the Consortiu	ım (including the					

List of abbreviations

ADPE	Abiotic Depletion Potential - Elements
ADPF	Abiotic Depletion Potential - Fossil fuels
АР	Acidification Potential
D	Deliverable
ELCD	European reference Life Cycle Database
EP	Eutrophication Potential
EPD	Environmental product declaration
EU	European Union
GHG	Greenhouse gases
GPP	Green public procurement
GUF Tool	Green Urban Furniture Tool
GWP100	Global Warming Potential for time horizon 100 years
IPCC	Intergovernmental Panel on Climate Change

LCA	Life cycle assessment
LCI	Life cycle inventory
LCIA	Life cycle impact assessment
LIFE FUTURE	Sustainable Urban FUrniTURE: Tool design to perform environmental assessments in the green procurement framework
ODP	Ozone Depletion Potential
PCR	Product category rules
WMO	World Meteorological Organization

Table of Contents

1.	Intr	oduction
2.	Me	thodology6
2.	1.	LCA factors
2.	.2.	Data sources
3.	Res	ults9
3.	1.	Wood
3.1.	1.	Wood-based materials9
3.1.	2.	Solid wood 11
3.1.	3.	Treatments12
3.	2.	Metals
3.2.	1.	Steel
3.2.	2.	Aluminium14
3.	3.	Plastics
3.3.	1.	Virgin plastics
3.3.	2.	Recycled plastics
3.	.4.	Rubbers
3.	5.	Building materials
3.5.	1.	Concrete
3.5.	2.	Cement 20
3.5.	3.	Gypsum
3.5.4	4.	Bricks
3.5.	5.	Tiles
4.	Disc	cussion and conclusions 22
5.	Ref	erences

LIFE FUTURE

1. INTRODUCTION

The LIFE FUTURE project is aimed at promoting green public procurement (GPP) of urban furniture. The main objective is to overcome the difficulties encountered by procurers when including environmental clauses in call for tenders and assessing the offers received.

To this end, an online tool is being developed and will be further validated during the project: the Green Urban Furniture Tool (GUF Tool). This tool will support public authorities on the purchasing of environmentally friendly urban furniture, guiding users throughout the whole tender process, from the generation of environmental requirements to include in the call for public tenders to the comparative environmental assessment of the products offered by different suppliers. In a first step, the tool will provide GPP criteria allowing public authorities to include environmental clauses for urban furniture in their call for tenders and to select those tenders that better fulfil the criteria. Public authorities willing to invest extra effort in GPP will have the chance of using the tool through a second step to perform a simplified life cycle assessment (LCA) of the different tenders selected in the first step.

The implementation action B1 of the LIFE FUTURE project focuses on the development of a database to feed the GUF Tool with the environmental information necessary to establish environmental clauses and perform simplified environmental assessments of different urban furniture products. This information includes both GPP criteria and environmental profiles for urban furniture.

At present, the project consortium has already gathered (or calculated), evaluated and simplified all the information required for the database, including both the GPP criteria and environmental profiles for materials and/or processes related to the above urban furniture products. This deliverable provides the environmental profiles or LCA factors to be included in the database.

2. METHODOLOGY

The GUF Tool will cover sixteen different urban furniture products, which can be grouped into three product categories¹ as follows:

- Street furniture products: (i) Benches, seats and chairs; (ii) Bicycle parking; (iii) Canopies and kiosks; (iv) Bins and containers; (v) Hydrants; (vi) Advertising and information panels; (vii) Planters and pots; (viii) Tree pits, manholes and lids.
- Recreational and leisure products: (ix) Playgrounds; (x) Sports courts; (xi) Showers and footbaths; (xii) Fountains and hydrants.
- Traffic management products: (xiii) Traffic signs; (xiv) Guardrails, barriers and parapets; (xv) Milestones and bollards; (xvi) Speed reducers.

All these urban furniture products were identified and characterized according to the different materials, processes and technical specifications required. The main materials used for urban furniture include wood and wood-based materials, metals (steel, aluminium and iron), various types of plastics (polyethylene, polypropylene, and so forth), rubbers and some building materials (such as concrete).

Environmental profiles for the materials and/or processes related to urban furniture products were based on LCA studies; i.e., these are LCA-based factors which were obtained and/or calculated based on data from environmental product declarations (EPDs, provided by manufacturers), eco-profiles (provided by sectorial organisations), open LCA databases and scientific literature.

2.1. LCA FACTORS

The environmental profiles to be included in the database are made up of LCA factors which show the different environmental impacts for the various materials and/or processes related to urban furniture, expressed per amount of materials used. Once implemented in the database, these LCA factors together with other input data provided by the tool user will make up the core of the calculation for the simplified environmental assessment of urban furniture products.

The environmental profiles or factors provided herein for urban furniture are based on the LCA methodology (ISO, 2006a,b), since it is currently the most widely applied methodology to evaluate the environmental impacts associated with products throughout their entire life cycle (from the cradle to the gate). These methodology allows to assess diverse environmental impact categories, evaluating the level of impact for each category according to predefined methods for life cycle impact assessment (LCIA). The LCIA method used here was the current version of CML-IA (Guinée et al., 2002), which defines and evaluates a set of ten environmental impact categories. However, only seven of these impact categories have been initially selected for their inclusion in the GUF Tool:

Climate change – GWP100. Climate change is related to emissions of greenhouse gases (GHG) to air. It can result in adverse effects upon ecosystem health, human health and material welfare. The model developed by the Intergovernmental Panel on Climate Change (IPCC) is used for impact assessment of climate change in the method CML-IA. LCA factors are expressed as Global Warming Potential for time horizon 100 years (GWP100), in kilograms of

¹ Note that urban furniture products consuming energy are outside the scope of the project and they will not be assessed using the GUF Tool.

carbon dioxide equivalent (kg CO_2 eq). The geographical scope of this indicator is at global scale.

- Ozone layer depletion ODP. Stratospheric ozone depletion results in a larger fraction of UV radiation reaching the earth surface. It can have harmful effects upon human health, animal health, terrestrial and aquatic ecosystems, biochemical cycles and on materials. The model developed by the World Meteorological Organization (WMO) is used for impact assessment of ozone depletion in the method CML-IA. LCA factors are expressed as Ozone Depletion Potential (ODP), in kilograms of trichlorofluoromethane equivalent (kg CFC-11 eq). The geographical scope of this indicator is at global scale and the time span is infinity.
- Acidification AP. Acidifying substances cause a wide range of impacts on soil, groundwater, surface water, organisms, ecosystems and materials (buildings). The adapted RAINS 10 model, which describes the fate and deposition of acidifying substances, is used for impact assessment of acidification in the method CML-IA. LCA factors are expressed as Acidification Potential (AP), expressed as kilograms of sulphur dioxide equivalent (kg SO₂ eq). The geographical scope of this indicator varies between local and continental scale, and the time span is infinity.
- Eutrophication EP. Eutrophication (also known as nutrification) includes all impacts due to excessive levels of macro-nutrients in the environment caused by emissions of nutrients to air, water and soil. The stoichiometric procedure of Heijungs (1992) is used for impact assessment of eutrophication in the method CML-IA. LCA factors are expressed as Eutrophication Potential (EP), in kilograms of phosphate equivalent (kg PO₄³⁻ eq). The geographical scope of this indicator varies between local and continental scale, and the time span is infinity.
- Photochemical oxidation POCP. Photo-oxidant formation is the formation of reactive substances (mainly ozone) that are injurious to human health and ecosystems and they also may damage crops. This environmental problem is also designated as "summer smog", whereas "winter smog" is outside the scope of this impact category. The UNECE Trajectory model is used for impact assessment of photochemical oxidation in the method CML-IA. LCA factors are expressed as Photochemical Ozone Creation Potential (POCP), in kilograms of ethylene equivalent (kg C₂H₄ eq). The geographical scope of this indicator varies between local and continental scale, and the time span is five days.
- Depletion of abiotic resources elements ADPE. Depletion of abiotic resources is concerned with protection of human welfare, human health and ecosystem health. This impact category is related to extraction of minerals and the impact assessment in the method CML-IA is based on concentration reserves and rate of de-accumulation. LCA factors are expressed as Abiotic Depletion Potential - Elements (ADPE), in kilograms of antimony equivalent (kg Sb eq). The geographical scope of this indicator is at global scale.
- Depletion of abiotic resources fossil fuels ADPF. Depletion of abiotic resources is concerned with protection of human welfare, human health and ecosystem health. This impact category is related to extraction of fossil fuels and the impact assessment in the method CML-IA is based on concentration reserves and rate of de-accumulation. LCA factors are expressed as Abiotic Depletion Potential - Fossil fuels (ADPF), in megajoules (MJ). The geographical scope of this indicator is at global scale.

2.2. DATA SOURCES

The environmental profiles or LCA factors were obtained and/or calculated based on data from different industrial and scientific sources, namely:

- Environmental product declarations (EPDs). EPDs are ISO 14025 standardized reports that communicate transparent and comparable information about the life cycle environmental performance of products. They are based on data on composition and environmental characteristics of products collected from LCAs developed as specified by predefined product category rules (PCRs). PCRs are drawn up by industry in full consultation with stakeholders and competitors. The information is thus presented in a common format and in a neutral way that enables evaluations and comparisons by purchasers. The quality of the information can be verified by a third party and can be accredited to give additional credibility.
- Eco-profiles. Eco-profiles are standardised reports that communicate transparent information intended to be used as cradle-to-gate building blocks for LCA studies of defined applications or products. Cradle-to-gate means that the assessment only includes life cycle stages and processes from the extraction of raw materials to the delivery of the product at plant. PlasticsEurope provides Eco-profiles for plastics, which include Life cycle inventory (LCI) datasets and EPDs representing EU production averages for these materials. These Eco-profiles are prepared in accordance with ISO 14040 and 14044 requirements for the development of LCA studies (ISO, 2006a,b).
- Other data sources. They include LCA databases and scientific literature on LCI/LCA. It should be noted that only open LCA databases were used as data sources (e.g., ELCD or European reference Life Cycle Database), since the LCA factors are intended to be integrated into the GUF Tool and commercial LCA databases (such as Ecoinvent or GaBi) do not allow to use their datasets for free for this purpose. Moreover, open LCA software (openLCA) was used for the required inventories and impact assessments in order to tackle the development of LCA factors more effectively.

3. RESULTS

This section compiles the environmental profiles or LCA factors gathered and/or calculated that will be included in the database. These have been classified herein by material type as follows: (1) wood (including wood-based materials), (2) metals, (3) plastics, (4) rubbers, and (5) building materials.

3.1. WOOD

Wood includes wood-based materials, solid wood and surface treatments used for this materials. The LCA factors were based on data from EPDs provided by manufacturers.

3.1.1. Wood-based materials

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO2 eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Fibreboard 18 mm (MDF), melamine coated	1 kg	-1.83E-01	9.81E-12	4.97E-03	8.98E-04	7.79E-04	1.94E-07	1.77E+01	
Fibreboard 25 mm (MDF), melamine coated	1 kg	-1.80E-01	9.48E-12	5.17E-03	9.24E-04	7.97E-04	1.92E-07	1.76E+01	
Fibreboard 18 mm (MDF), melamine coated, moisture resistant (MR)	1 kg	2.37E-01	1.50E-11	5.17E-03	1.14E-03	6.32E-04	5.05E-07	2.31E+01	WoodSolutions (2015a)
Fibreboard 25 mm (MDF), melamine coated, moisture resistant (MR)	1 kg	3.14E-01	1.54E-11	5.46E-03	1.20E-03	6.63E-04	5.33E-07	2.39E+01	
Plywood 9mm, C-bond interior (joinery)	1 kg	-6.52E-01	1.15E-11	5.74E-03	1.28E-03	1.28E-03	3.64E-07	1.09E+01	WoodSolutions
Plywood 7 mm, A-bond exterior (bracing)	1 kg	-5.36E-01	1.35E-11	5.72E-03	1.17E-03	1.19E-03	5.10E-07	1.71E+01	(2015b)

Material/Process	Functional unit	GWP (kg CO₂ eq)	ODP (kg CFC11 eq)	AP (kg SO2 eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C2H4 eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Plywood 9 mm, A-bond exterior (structural)	1 kg	-5.37E-01	1.35E-11	5.72E-03	1.17E-03	1.19E-03	5.11E-07	1.71E+01	
Plywood 17mm, A-bond formply (formwork)	1 kg	-5.37E-01	1.35E-11	5.73E-03	1.16E-03	1.19E-03	5.11E-07	1.71E+01	
Plywood 15 mm, A- bond flooring (residential)	1 kg	-5.37E-01	1.35E-11	5.73E-03	1.16E-03	1.20E-03	5.12E-07	1.72E+01	
Plywood 25 mm, A- bond flooring (commercial)	1 kg	-5.37E-01	1.35E-11	5.73E-03	1.17E-03	1.19E-03	5.11E-07	1.71E+01	
Particleboard 16mm, melamine coated	1 kg	-4.66E-01	8.85E-12	3.35E-03	6.95E-04	6.06E-04	1.53E-07	1.46E+01	
Particleboard 18mm, melamine coated	1 kg	-4.87E-01	8.56E-12	3.34E-03	6.91E-04	6.00E-04	1.48E-07	1.42E+01	
Particleboard 16mm, melamine coated, moisture resistant (MR)	1 kg	-1.64E-01	1.45E-11	3.86E-03	9.92E-04	5.18E-04	4.67E-07	2.10E+01	
Particleboard 18mm, melamine coated, moisture resistant (MR)	1 kg	-1.13E-01	1.17E-11	3.05E-03	7.87E-04	4.12E-04	3.72E-07	1.69E+01	WoodSolutions (2015c)
Particleboard 19 mm, flooring, uncoated	1 kg	-4.19E-01	1.03E-11	2.83E-03	7.84E-04	3.67E-04	3.86E-07	1.48E+01	
Particleboard 22 mm, flooring, uncoated	1 kg	-4.12E-01	1.03E-11	2.85E-03	7.89E-04	3.70E-04	3.87E-07	1.48E+01	
Particleboard 25 mm, flooring, uncoated	1 kg	-4.07E-01	1.03E-11	2.88E-03	7.88E-04	3.73E-04	3.88E-07	1.49E+01]
Particleboard 25 mm, uncoated, based on UK consumption mix	1 kg	-9.63E-01	3.08E-11	1.64E-03	1.90E-04	2.34E-04	1.29E-07	8.63E+00	PE International & Wood for Good (2013a)

3.1.2. Solid wood

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO2 eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source	
Beech timber planed, Beech (from Germany)	1 kg	-1.34E+00	2.30E-07	1.36E-03	2.12E-04	3.17E-03	5.55E-06	2.61E+01		
Planed timber, Scots Pine (from Sweden)	1 kg	-1.37E+00	2.31E-07	1.82E-03	2.28E-04	3.65E-03	5.63E-06	2.65E+01	Accsys Technologies PLC (2015)	
Planed timber, Radiata Pine (from New Zealand)	1 kg	-8.49E-01	2.80E-07	2.20E-03	3.47E-04	7.22E-03	5.35E-06	3.00E+01	FLC (2013)	
Sawn timber planed, spruce and pine logs	1 kg	-1.54E+00	9.28E-13	5.17E-04	1.05E-04	1.69E-04	2.84E-08	6.56E-01	Fritz EGGER GmbH & Co. OG (2016a)	
Sawn timber green, spruce and pine logs	1 kg	-1.05E+00	4.12E-13	1.59E-04	3.69E-05	7.72E-06	4.89E-09	3.26E-01	Fritz EGGER GmbH & Co. OG (2016b)	
Kiln dried hardwood, based on UK consumption mix	1 kg	-1.26E+00	5.30E-11	1.62E-03	2.12E-04	8.52E-04	2.61E-08	3.62E+00	PE International & Wood for Good (2013b)	
Kiln dried softwood based on the UK consumption mix	1 kg	-1.41E+00	6.17E-12	1.27E-03	2.19E-04	1.01E-04	1.62E-08	2.88E+00	PE International & Wood for Good (2013c)	
Hardwood, rough- sawn, kiln-dried	1 kg	-1.08E+00	7.87E-13	3.34E-03	7.51E-04	3.01E-03	4.96E-08	4.68E+00		
Hardwood, dressed, kiln-dried	1 kg	-8.58E-01	1.54E-12	4.57E-03	9.92E-04	3.89E-03	6.56E-08	6.68E+00	WoodSolutions	
Green hardwood, rough-sawn	1 kg	-9.52E-01	5.30E-13	2.78E-03	6.34E-04	2.49E-03	2.86E-08	3.78E+00	(2015d)	
Green hardwood, dressed	1 kg	-7.63E-01	1.19E-12	3.83E-03	8.41E-04	3.22E-03	3.83E-08	5.48E+00		
American Southern Yellow pine treated with bio-based chemicals	1 kg	-1.26E+00	8.35E-08	8.33E-03	6.27E-04	-8.80E-05	3.00E-06	1.52E+01	Kebony AS (2016a)	

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO2 eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Scots Pine from Sweden treated with bio-based chemicals	1 kg	-1.05E+00	6.72E-08	4.02E-03	6.25E-04	8.13E-05	2.03E-06	9.84E+00	Kebony AS (2016b)
Glued laminated timber	1 kg	-1.27E+00	4.16E-08	1.55E-03	3.14E-04	2.91E-04	1.33E-06	4.29E-04	Studiengemeinschaft Holzleimbau e.V. (2013)
Cross laminated timber, based on UK consumption mix	1 kg	-1.01E+00	4.75E-11	2.17E-03	3.59E-04	1.90E-04	2.89E-07	8.18E+00	PE International & Wood for Good (2013d)
Cross laminated timber (X-Lam)	1 kg	-1.22E+00	6.66E-08	1.37E-03	2.70E-04	2.75E-04	1.25E-06	4.63E+00	Studiengemeinschaft Holzleimbau e.V. (2016)

3.1.3. Treatments

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO2 eq)	EP (kg PO₄³- eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Silicone exterior paint for wood (Natura A1)	1 kg	1.33E+00	9.51E-08	6.53E-03	1.82E-03	5.29E-04	2.30E-06	2.60E+01	Polisan (2015a)
Exterior paint for wood (Exelans Macro)	1 kg	2.14E+00	1.88E-07	9.93E-03	3.56E-03	1.00E-03	3.65E-06	3.90E+01	Polisan (2015b)
Protective anti-degradation water-repellent for wood	1 kg	6.84E-01	3.97E-08	2.29E-03	1.09E-03	9.02E-04	n/a	1.88E+01	Ecobeton (2012)
Adhesive mix for wood (UF+PVA+PF+PRF+MUF+PUR+EPI)	1 kg	1.62E+00	6.94E-11	3.60E-03	8.69E-04	9.31E-04	1.71E-06	3.36E+01	PE International & Wood for Good (2013e)

3.2. METALS

Metals include various types of steel and aluminium. The LCA factors were based on data from EPDs provided by manufacturers.

3.2.1. Steel

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO2 eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source	
Stainless steel, secondary production route (scrap)	1 kg	3.79E+00	1.83E-08	2.49E-02	1.35E-03	1.45E-03	1.84E-05	4.30E+01	Outokumpu Stainless Ltd (2015)	
Galvanized steel, grade S 250 GD + z 140	1 kg	2.65E+00	4.40E-08	6.10E-03	5.50E-04	1.10E-03	2.30E-07	4.00E-02		
Galvanized steel, grade S 350 GD + z 275	1 kg	2.64E+00	4.30E-08	5.95E-03	5.45E-04	1.10E-03	2.30E-07	4.00E-02	Europrofil AB (2014)	
Galvanized steel, grade S 250 GD + az 185	1 kg	2.70E+00	4.05E-08	6.30E-03	5.35E-04	1.10E-03	2.30E-07	4.00E-02		
Galvanized steel, grade S 250 GD + z 275, polyester coated (min 2*25 μm)	1 kg	2.73E+00	4.80E-08	6.40E-03	5.90E-04	1.10E-03	2.30E-07	4.00E-02		
Galvanized steel sheet, as fixings, connectors, joist webs, hangers	1 kg	2.25E+00	3.71E-11	8.04E-03	6.96E-04	1.12E-03	1.43E-04	2.56E+01	PE International & Wood for Good (2013f)	
Hot rolled steel	1 kg	2.52E+00	5.88E-11	9.60E-03	1.03E-03	1.54E-03	1.59E-07	2.80E+01	BlueScope Steel Ltd (2015)	
Hot rolled steel plates	1 kg	2.55E+00	9.11E-09	5.60E-03	7.93E-07	5.27E-03	5.43E-07	2.65E+01	Norwegian Steel Association (2014)	

3.2.2. Aluminium

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO2 eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Primary aluminium ingot	1 kg	8.94E+00	4.35E-10	6.11E-02	2.60E-03	3.11E-03	4.94E-06	8.83E+01	The Aluminum Association (2014a)
Secondary aluminium ingot (100% scrap)	1 kg	6.73E-01	8.49E-11	2.08E-03	1.48E-04	1.52E-04	5.15E-07	1.02E+01	The Aluminum Association (2014b)
Aluminium sheet	1 kg	9.40E+00	2.80E-07	4.90E-02	2.70E-03	2.90E-03	5.10E-06	1.00E+02	German Aluminium Association GDA (2013a)
Aluminium sheet, coil coated	1 kg	1.10E+01	3.00E-07	5.40E-02	3.00E-03	3.30E-03	5.60E-06	1.20E+02	German Aluminium Association GDA (2013b)
Cold rolled aluminium	1 kg	5.33E+00	4.47E-10	3.07E-02	1.46E-03	1.82E-03	2.98E-06	6.13E+01	The Aluminum Association (2014c)
Hot rolled aluminium	1 kg	3.93E+00	2.52E-10	2.34E-02	1.09E-03	1.32E-03	2.26E-06	4.36E+01	The Aluminum Association (2014d)
Extruded aluminium	1 kg	6.57E+00	4.14E-10	4.01E-02	1.90E-03	2.21E-03	3.97E-06	7.13E+01	The Aluminum Association (2014e)
Cold-formed aluminium sheet	1 kg	1.10E+01	3.00E-07	5.70E-02	3.10E-03	3.40E-03	5.90E-06	1.30E+02	German Aluminium Association GDA (2013c)
Aluminium composite panels	1 kg	3.70E+01	8.10E-07	1.70E-01	1.00E-02	1.20E-02	2.10E-05	5.50E+02	German Aluminium Association GDA (2013d)

3.3. PLASTICS

Plastics include various types of plastic materials both virgin and recycled. The LCA factors were based on data from the Eco-profiles developed by PlasticsEurope for plastics.

Additional calculations were made to develop LCA factors for recycled plastics. LCIs were in this case developed using data from scientific literature regarding the environmental loads from the different recycling process steps (Hestin et al., 2015), including waste collection, pre-treatment and sorting, transportation to recyclers and reprocessing operations in recycling plants. In addition, LCIs for auxiliary materials, energy, transport operations and other inputs used for the assessments were taken from the ELCD database. Two different approaches were assumed for the modelling of recycled plastics:

- Cut-off approach. Under this approach all virgin material production burdens are assigned to the first use of the material, and the burdens assigned • to the recycled plastics system begin with recovery of the post-consumer material. Hence, all of the burdens for plastics recovery, including collection and transport, separation and sorting and reprocessing, are assigned to the recycled material.
- Open-loop approach. Under this approach the burdens for virgin material production, recovery and recycling, and ultimate disposal of recycled material are shared among all the sequential useful lives of the material. Therefore, the share of virgin material burdens allocated to any individual use of the plastic material depends upon assumptions about the total number of useful lives of the material. For the purposes of obtaining cradle-togate factors for recycled plastics, an assumption of two useful lives of the plastic material was done in this study (i.e., once in a virgin product, once in a recycled product, and then disposed). Hence, the burdens for virgin material production, post-consumer recovery and reprocessing are divided between the virgin and recycled uses of the material.

3.3.1.	Virgin	plastics
--------	--------	----------

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO2 eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
High impact polystyrene granulate (HIPS)	1 kg	2.43E+00	1.72E-08	5.65E-03	5.10E-04	9.00E-04	1.04E-06	7.85E+01	PlasticsEurope (2012)
Polyvinylchloride resin, emulsion polymerisation (E-PVC)	1 kg	2.56E+00	2.40E-06	6.93E-03	1.25E-03	5.40E-04	1.40E-05	5.42E+01	PlasticsEurope (2015a)

Material/Process	Functional unit	GWP (kg CO₂ eq)	ODP (kg CFC11 eq)	AP (kg SO₂eq)	EP (kg PO₄³- eq)	POCP (kg C2H4 eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Polyvinylchloride resin, suspension polymerisation (S-PVC)	1 kg	1.99E+00	2.20E-06	5.05E-03	9.40E-04	5.60E-04	1.29E-05	4.72E+01	
Polypropylene granulate (PP)	1 kg	1.63E+00	5.50E-07	4.32E-03	1.18E-03	3.70E-04	1.40E-07	7.02E+01	PlasticsEurope (2014a)
Low-density polyethylene granulate (LDPE)	1 kg	1.87E+00	8.20E-07	4.36E-03	1.25E-03	1.33E-03	5.20E-08	7.28E+01	PlasticsEurope
High-density polyethylene granulate (HDPE)	1 kg	1.80E+00	6.40E-07	4.28E-03	1.20E-03	6.30E-04	4.40E-08	7.20E+01	(2014b)
Acrylonitrile- butadiene-styrene granulate (ABS)	1 kg	3.10E+00	2.60E-10	7.69E-03	1.03E-03	1.09E-03	1.48E-06	8.14E+01	PlasticsEurope (2015b)
Polymethyl methacrylate (PMMA) beads	1 kg	3.75E+00	4.20E-07	1.74E-02	2.16E-03	9.40E-04	2.30E-06	9.70E+01	
Polymethyl methacrylate (PMMA) cast sheet	1 kg	4.77E+00	4.60E-07	2.63E-02	2.99E-03	1.48E-03	7.00E-06	1.19E+02	PlasticsEurope (2015c)
Polymethyl methacrylate (PMMA) extruded sheet	1 kg	4.38E+00	4.10E-07	1.83E-02	3.04E-03	9.60E-04	2.30E-06	1.06E+02	
Polycarbonate granulate (PC)	1 kg	4.13E+00	1.99E-07	7.47E-03	9.20E-04	1.61E-03	7.26E-06	8.90E+01	PlasticsEurope (2011a)
Polyamide 6 granulate (PA 6)	1 kg	6.70E+00	1.20E-07	1.20E-02	4.20E-03	6.00E-04	1.70E-08	1.16E+02	PlasticsEurope (2011b)
Polyamide 66 granulate (PA 66)	1 kg	6.44E+00	8.30E-08	1.29E-02	3.70E-03	1.00E-03	3.20E-06	1.27E+02	PlasticsEurope (2011c)

3.3.2. Recycled plastics

Material/Process	Functional unit	GWP (kg CO₂ eq)	ODP (kg CFC11 eq)	AP (kg SO₂eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C₂H₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Recycled plastics, cut-off	1 kg	3.98E-01	2.38E-08	1.65E-03	1.23E-04	9.32E-05	3.52E-08	4.60E+00	
Recycled HIPS, open- loop	1 kg	1.41E+00	2.05E-08	3.65E-03	3.16E-04	4.97E-04	5.38E-07	4.15E+01	
Recycled PVC, open- loop	1 kg	1,34E+00	1,16E-06	3,82E-03	6,09E-04	3,22E-04	6,74E-06	2,77E+01	
Recycled PP, open-loop	1 kg	1.01E+00	2.87E-07	2.99E-03	6.51E-04	2.32E-04	8.76E-08	3.74E+01	
Recycled LDPE, open- loop	1 kg	1.13E+00	4.22E-07	3.01E-03	6.86E-04	7.12E-04	4.36E-08	3.87E+01	Own
Recycled HDPE, open- loop	1 kg	1.10E+00	3.32E-07	2.97E-03	6.61E-04	3.62E-04	3.96E-08	3.83E+01	calculations primarily based on
Recycled ABS, open- loop	1 kg	1.75E+00	1.20E-08	4.67E-03	5.76E-04	5.92E-04	7.58E-07	4.30E+01	Hestin et al. (2015)
Recycled PMMA, open- loop	1 kg	2.07E+00	2.22E-07	9.53E-03	1.14E-03	5.17E-04	1.17E-06	5.08E+01	(2013)
Recycled PC, open-loop	1 kg	2.26E+00	1.11E-07	4.56E-03	5.21E-04	8.52E-04	3.65E-06	4.68E+01	
Recycled PA 6, open- loop	1 kg	3.55E+00	7.19E-08	6.83E-03	2.16E-03	3.47E-04	2.61E-08	6.03E+01	
Recycled PA 66, open- loop	1 kg	3.42E+00	5.34E-08	7.28E-03	1.91E-03	5.47E-04	1.62E-06	6.58E+01	

3.4. RUBBERS

Material/Process	Functional unit	GWP (kg CO₂ eq)	ODP (kg CFC11 eq)	AP (kg SO₂eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Resilient floor covering, GRANITO 2mm	1 kg	2.90E+00	4.60E-07	1.31E-02	1.25E-03	1.73E-03	5.30E-05	5.61E+01	Artigo (2015)
Smooth rubber floor covering, ERFMI 2mm	1 kg	3.03E+00	5.15E-07	1.15E-02	1.09E-03	2.36E-03	5.15E-05	5.45E+01	ERFMI (2013)
Recycled rubber, Sport Mat flooring, DINOFLEX 8 mm	1 kg	1.97E+00	3.01E-07	8.80E-03	2.50E-03	4.62E-04	6.31E-03	4.52E+01	Dinoflex (2015)
Rubber, SBR crumb, ECORE (6.6mm	1 kg	1.52E+00	6.59E-09	8.36E-03	1.04E-03	3.93E-04	2.13E-07	2.44E+01	Ecore (2016)
Playground tile, rubber, SBR, MATSINC 63.5mm	1 kg	3.04E+00	2.67E-07	1.31E-02	3.82E-03	7.04E-04	1.19E-05	5.65E+01	Mats Inc (2015)

3.5. BUILDING MATERIALS

Building materials include concrete, cement, gypsum, bricks and tiles. The LCA factors were based on data from EPDs provided by manufacturers.

3.5.1. Concrete

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO2 eq)	EP (kg PO₄³- eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Precast concrete wall elements	1 kg	1.89E-01	1.07E-08	6.53E-04	7.50E-05	3.78E-05	2.26E+01	1.54E+00	UPB AS (2016a)
Precast concrete insulated wall elements	1 kg	2.14E-01	1.27E-08	8.73E-04	9.17E-05	4.93E-05	2.93E+01	1.91E+00	UPB AS (2016b)
Precast concrete columns	1 kg	2.36E-01	1.35E-08	8.42E-04	9.34E-05	4.60E-05	2.78E-07	1.96E+00	UPB AS (2016c)
Precast concrete beams	1 kg	2.41E-01	1.38E-08	8.77E-04	9.56E-05	4.76E-05	2.81E-07	2.02E+00	UPB AS (2016d)
Hollow core slabs	1 kg	2.47E-01	1.17E-08	7.50E-04	1.09E-04	6.89E-05	6.00E-07	1.73E+00	UPB AS (2016e)
Hanson Thermalite autoclaved aerated concrete block	1 kg	2.80E-01	1.44E-07	6.12E-04	8.34E-05	7.85E-05	4.91E-10	2.54E+00	Hanson UK (2015)
Precast concrete kerbs	1 kg	2.25E-05	1.54E-08	6.34E-04	1.58E-04	3.68E-05	1.92E-07	1.89E+00	Aggregate Industries (2016)
Lightweight concrete block, Leca Universalblokk 20 cm,	1 kg	5.57E-02	1.52E-09	1.72E-04	1.69E-05	6.62E-05	8.52E-08	3.66E-01	Saint-Gobain Byggevarer AS (2014a)
Lightweight concrete block, Leca Finblokk 15 cm	1 kg	9.90E-02	1.89E-09	2.28E-04	2.45E-05	1.33E-04	1.06E-07	5.67E-01	Saint-Gobain Byggevarer AS (2014b)
Lightweight concrete block, Leca Basicblokk 15 cm	1 kg	6.29E-02	1.60E-09	1.97E-04	1.90E-05	7.33E-05	9.29E-08	4.06E-01	Saint-Gobain Byggevarer AS (2014c)

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO2 eq)	EP (kg PO₄ ³⁻ eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Lightweight concrete block, Leca Lettveggsblokk 88 mm	1 kg	5.62E-02	1.50E-09	1.52E-04	1.65E-05	7.33E-05	9.38E-08	3.70E-01	Saint-Gobain Byggevarer AS (2014d)

3.5.2. Cement

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO₂eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C₂H₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Cement, Cem III	1 kg	4.17E-01	4.40E-08	1.16E-03	2.75E-04	1.23E-04	1.03E-07	3.09E+00	ICEA (2014)
Calcium aluminate cement	1 kg	1.13E+00	1.29E-07	5.80E-03	1.06E-03	2.40E-04	1.91E-07	1.23E+01	Çimsa Çimento San. Ve Tic. A.Ş. (2015a)
White Portland cement	1 kg	1.07E+00	2.02E-05	1.00E-03	6.29E-04	4.31E-05	1.30E-07	3.07E+00	Çimsa Çimento San. Ve Tic. A.Ş. (2015b)
Portland cement, CEM I 52.5 N	1 kg	8.80E-01	4.11E-11	2.07E-01	3.12E-04	1.83E-04	1.41E-06	4.18E+00	Nesher Israel Cement Enterprises Ltd (2014)

3.5.3. Gypsum

Material/Process	Functional unit	GWP (kg CO₂ eq)	ODP (kg CFC11 eq)	AP (kg SO₂ eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C₂H₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Gyproc WallBoard 12.5mm	1 kg	2.51E-01	7.43E-09	7.31E-04	9.34E-05	8.02E-05	4.31E-08	3.83E+00	BPB United Kingdom Ltd (2013)
Gypsum-based plaster	1 kg	1.51E-01	1.27E-08	1.44E-04	3.21E-05	5.69E-04	9.09E-08	2.88E+00	Alçıbay (2016)

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO₂eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Gyproc Finish plaster	1 kg	8.80E-02	3.90E-09	2.10E-04	2.00E-05	2.30E-05	1.70E-08	1.20E+00	Gypsum Industries Ltd (2014)
Glasroc 15mm	1 kg	2.21E-01	1.70E-08	5.97E-04	4.57E-05	6.49E-05	2.36E-08	3.24E+00	BPB United Kingdom Ltd(2014)

3.5.4. Bricks

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO₂ eq)	EP (kg PO4 ³⁻ eq)	POCP (kg C₂H₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Generic bricks	1 kg	1.58E-01	n/a	1.35E-03	5.00E-05	7.50E-05	n/a	2.84E+00	The Brick Development (2013)
Hollow bricks	1 kg	2.83E-01	8.08E-10	7.02E-04	8.50E-05	5.10E-05	3.40E-08	2.60E+00	Heluz (2015)
Proof wall and ceiling bricks	1 kg	1.89E-01	1.24E-12	2.55E-04	3.04E-05	2.69E-05	1.38E-08	1.95E+00	Ziegel (2014)

3.5.5. Tiles

Material/Process	Functional unit	GWP (kg CO2 eq)	ODP (kg CFC11 eq)	AP (kg SO₂eq)	EP (kg PO₄³- eq)	POCP (kg C ₂ H ₄ eq)	ADPE (kg Sb eq)	ADPF (MJ)	Data source
Floor tiles	1 kg	4.40E-01	2.81E-08	1.45E-03	4.61E-04	7.49E-05	3.57E-07	6.79E+00	Seranit (2015a)
Wall tiles	1 kg	7.02E-01	4.30E-08	1.93E-03	5.38E-04	1.16E-04	3.33E-07	9.82E+00	Seranit (2015b)
Ceiling tiles	1 kg	6.36E-01	5.64E-08	6.36E-04	4.55E-04	4.73E-03	1.05E-06	1.15E+01	Rockwool Rockfon Norway (2015)
Porcelain Tiles	1 kg	7.13E-01	4.18E-08	2.59E-03	9.24E-04	1.24E-04	0.00E+00	1.09E+01	Seranit (2015c)

4. DISCUSSION AND CONCLUSIONS

The action B1 is aimed at developing a database with environmental data to feed the GUF Tool. The environmental data have already been collected and/or calculated, including environmental profiles for materials/processes related to urban furniture products including wood and wood-based materials, metals, plastics, rubbers, and building materials. These are LCA-based factors (incl. global warming, acidification, ozone depletion, etc.), which were obtained and/or calculated based on data from EPDs, eco-profiles, open LCA databases, literature, etc. These data were treated to be consistent with the needs of the target users, but further simplification is still required to achieve a high usability of the GUF Tool.

Simplification measures were proposed (in action B2), and these must be based on the results from the LCA studies conducted (in action B1) during the next months based on field data provided by urban furniture manufacturers. These simplifications measures include:

- Reduction of the number of environmental indicators: seven environmental indicators (or impact categories) have been collected but these could be reduced to only those more relevant and understandable by tool users; e.g., climate change, depletion of fossil resources, and other demonstrated to be especially relevant, or integrating them into single indicators.
- Reduction of the number of materials/processes: these are being aggregated into a manageable number for the user; e.g., 3-4 categories for the most used wood-based materials plus another category covering the rest of wood-based materials.
- Inclusion of only those processes/stages with significant environmental impact.
- Some measures to simplify the data entry by tool users are also being investigated (in Action B2), like the use of different formats to import data directly provided by manufacturers/suppliers; e.g., spreadsheets, BIM format, etc.

5. REFERENCES

- Accsys Technologies PLC (2015). Environmental Product Declaration Accoya Wood decking, cladding and planed timber for joinery applications. Oslo, Norway: The Norwegian EPD Foundation.
- Aggregate Industries (2016). Environmental Product Declaration for precast concrete kerbs, Charcon EcoKerb. Stockholm, Sweden: The International EPD[®] System.
- Alçıbay (2016). Environmental Product Declaration In Accordance with ISO14025 and EN15804 for Gypsum Based Plaster. Stockholm, Sweden: The International EPD[®] System.
- BlueScope Steel Ltd (2015). Environmental Product Declaration Steel Hot Rolled Coil. New Zealand: The Australasian EPD[®] Programme Ltd.
- BPB United Kingdom Ltd trading as British Gypsum (2013). Environmental Product Declaration In Accordance with ISO14025 and EN15804 12.5mm Gyproc WallBoard. Stockholm, Sweden: The International EPD[®] System.
- BPB United Kingdom Ltd trading as British Gypsum (2014). Environmental Product Declaration In Accordance with ISO14025 and EN15804 15 mm Glasroc F FIRECASE. Stockholm, Sweden: The International EPD[®] System.
- Çimsa Çimento San. Ve Tic. A.Ş. (2015a). Environmental Product Declaration Çimsa ISIDAÇ 40 [®] Calcium Aluminate Cement. Berlin, Germany: Institut Bauen und Umwelt e.V. (IBU).
- Çimsa Çimento San. Ve Tic. A.Ş. (2015b). Environmental Product Declaration Çimsa Super White CEM I 52,5 R White Portland. Berlin, Germany: Institut Bauen und Umwelt e.V. (IBU).
- Ecobeton (2012). Environmental Product Declaration: Protective Anti-degradation Water-repellent for Wood, Everwood.
- Ecore (2016). Environmental Product Declaration for Flooring: Galaxy RX. USA: SCS Global Services.
- ERFMI vzw, European Resilient Flooring Manufacturers' Institute (2013). Environmental Product Declaration Homogeneous and heterogeneous smooth rubber floor coverings according to EN 1817. Berlin, Germany: Institut Bauen und Umwelt e.V. (IBU).
- Europrofil AB (2014). Environmental Product Declaration: Light gauge steel profiles. Stockholm, Sweden: The International EPD[®] System.
- Dinoflex (2015). Environmental Product Declaration for Flooring: Evolution Commercial Flooring, Sport Mat Flooring, Next Step Flooring (High Impact, Luxury, Walk Soft). USA: SCS Global Services.
- Fritz EGGER GmbH & Co. OG (2016a). Environmental Product Declaration EGGER sawn timber planed. Berlin, Germany: Institut Bauen und Umwelt e.V. (IBU).
- Fritz EGGER GmbH & Co. OG (2016b). Environmental Product Declaration EGGER sawn timber planed. Berlin, Germany: Institut Bauen und Umwelt e.V. (IBU).
- German Aluminium Association GDA (2013a). Environmental Product Declaration Blank aluminium sheet. Berlin, Germany: Institut Bauen und Umwelt e.V. (IBU).
- German Aluminium Association GDA (2013b). Environmental Product Declaration Coil-coated aluminium sheet. Berlin, Germany: Institut Bauen und Umwelt e.V. (IBU).

- German Aluminium Association GDA (2013c). Environmental Product Declaration Cold-formed aluminium sheet for exterior applications. Berlin, Germany: Institut Bauen und Umwelt e.V. (IBU).
- German Aluminium Association GDA (2013d). Environmental Product Declaration Aluminium composite panels. Berlin, Germany: Institut Bauen und Umwelt e.V. (IBU).
- Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener-Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2002). Handbook on life cycle assessment. Operational guide to the ISO standards. Part III: Scientific background. Dordrecht, The Netherlands: Kluwer Academic Publishers.
- Gypsum Industries Ltd (2014). Environmental Product Declaration In Accordance with ISO14025 and EN15804 Gyproc Finish Plaster (Skimcoat, Skimcoat Short Set, Carlite and Carlite Ultra products). Stockholm, Sweden: The International EPD[®] System.
- Hanson UK (2015). Environmental Product Declaration: Hanson Thermalite Autoclaved Aerated Concrete Block (470-770 kg/m3). UK: BRE Global Ltd.
- Heluz (2015). Environmental Product Declaration In Accordance with ISO14025 and EN15804 for: Hollow bricks and bricks products. Stockholm, Sweden: The International EPD[®] System.
- Hestin M, Faninger T, Milios L (2015). Increased EU Plastics Recycling Targets: Environmental, Economic and Social Impact Assessment, Final Report. UK: Deloitte.
- ICEA (2014). Declaración Ambiental de Producto Cemento CEM III. España: AENOR.
- ISO (International Organization for Standardization) (2006a). ISO 14040:2006 environmental management, life cycle assessment, principles and framework. Geneva, Switzerland: ISO.
- ISO (International Organization for Standardization) (2006b). ISO 14044:2006 environmental management, life cycle assessment, requirements and guidelines. Geneva, Switzerland: ISO.
- Kebony AS (2016a). Environmental Product Declaration Kebony Southern Yellow Pine (SYP). Oslo, Norway: The Norwegian EPD Foundation.
- Kebony AS (2016b). Environmental Product Declaration Kebony Scots Pine Cladding. Oslo, Norway: The Norwegian EPD Foundation.
- Mats Inc (2015). Environmental Product Declaration for Flooring: Combination Tile, Domination, Duo Tile, Outdoor Paver, Panorama, Panorama Eco, Panorama Stance, Playground Tile, Rooftop Paver. USA: SCS Global Services.
- Nesher Israel Cement Enterprises Ltd (2014). Environmental Product Declaration Portland cement CEM I 52.5 N. Stockholm, Sweden: The International EPD[®] System.
- Norwegian Steel Association (2014). Environmental Product Declaration Hot rolled steel plates (Type 1.1). Oslo, Norway: The Norwegian EPD Foundation.
- Outokumpu Stainless Ltd (2015). Environmental Product Declaration: Stainless Steel Reinforcing Bar (secondary production route scrap). UK: BRE Global Ltd.
- PE International & Wood for Good (2013a). Wood for Good Lifecycle Database Particleboard (Uncoated).
- PE International & Wood for Good (2013b). Wood for Good Lifecycle Database Kiln Dried Sawn Hardwood.

- PE International & Wood for Good (2013c). Wood for Good Lifecycle Database Kiln Dried Sawn Softwood.
- PE International & Wood for Good (2013d). Wood for Good Lifecycle Database Cross Laminated Timber.
- PE International & Wood for Good (2013e). Wood for Good Lifecycle Database Wood Adhesive Mix.
- PE International & Wood for Good (2013f). Wood for Good Lifecycle Database Galvanised Steel Sheet.
- PlasticsEurope (2011a). Eco-profiles and Environmental Product Declarations of the European Plastics Manufacturers – Polycarbonate.
- PlasticsEurope (2011b). Eco-profiles and Environmental Product Declarations of the European Plastics Manufacturers – Polyamide 6 (PA6).
- PlasticsEurope (2011c). Eco-profiles and Environmental Product Declarations of the European Plastics Manufacturers – Polyamide 6.6 (PA6.6).
- PlasticsEurope (2012). Eco-profiles and Environmental Product Declarations of the European Plastics Manufacturers – General-Purpose Polystyrene (GPPS) and High-Impact Polystyrene (HIPS).
- PlasticsEurope (2014a). Ecoprofiles and Environmental Product Declarations of the European Plastics Manufacturers – Polypropylene (PP).
- PlasticsEurope (2014b). Ecoprofiles and Environmental Product Declarations of the European Plastics Manufacturers: High-density Polyethylene (HDPE), Low-density Polyethylene (LDPE), Linear Lowdensity Polyethylene (LLDPE).
- PlasticsEurope (2015a). Ecoprofiles and Environmental Product Declarations of the European Plastics Manufacturers – Vinyl chloride (VCM) and Polyvinyl chloride (PVC).
- PlasticsEurope (2015b). Ecoprofiles and Environmental Product Declarations of the European Plastics Manufacturers – Styrene Acrylonitrile (SAN) and Acrylonitrile Butadiene Styrene (ABS).
- PlasticsEurope (2015c). Ecoprofiles and Environmental Product Declarations of the European Plastics Manufacturers – Poly methyl methacrylate (PMMA).
- Polisan (2015a). Environmental Product Declaration In Accordance with ISO14025 and EN15804 for Natura A1 Silicone Exterior Paints. Stockholm, Sweden: The International EPD[®] System.
- Polisan (2015b). Environmental Product Declaration In Accordance with ISO14025 and EN15804 for Exelans Macro Exterior Paints. Stockholm, Sweden: The International EPD[®] System.
- Rockwool Rockfon Norway (2015). Environmental Product Declaration Ceiling tiles (91-131 kg/m3). Oslo, Norway: The Norwegian EPD Foundation.
- Saint-Gobain Byggevarer AS (2014a). Environmental Product Declaration Leca Universalblokk 20 cm, Lightweight Concrete Block. Oslo, Norway: The Norwegian EPD Foundation.
- Saint-Gobain Byggevarer AS (2014b). Environmental Product Declaration Leca Finblokk 15 cm, Lightweight Concrete Block. Oslo, Norway: The Norwegian EPD Foundation.
- Saint-Gobain Byggevarer AS (2014c). Environmental Product Declaration Leca Basicblokk 15 cm, Lightweight Concrete Block. Oslo, Norway: The Norwegian EPD Foundation.

- Saint-Gobain Byggevarer AS (2014d). Environmental Product Declaration Leca Lettveggsblokk 88 mm, Lightweight Concrete Block. Oslo, Norway: The Norwegian EPD Foundation.
- Seranit (2015a). Environmental Product Declaration for Floor Tiles in accordance with EN15804 and ISO14025. Stockholm, Sweden: The International EPD[®] System.
- Seranit (2015b). Environmental Product Declaration for Wall Tiles in accordance with EN15804 and ISO14025. Stockholm, Sweden: The International EPD[®] System.
- Seranit (2015c). Environmental Product Declaration for Porcelain Tiles in accordance with EN15804 and ISO14025. Stockholm, Sweden: The International EPD[®] System.
- Studiengemeinschaft Holzleimbau e.V. (2013). Environmental Product Declaration Glued laminated timber. Königswinter, Germany: Institut Bauen und Umwelt e.V. (IBU).
- Studiengemeinschaft Holzleimbau e.V. (2016). Environmental Product Declaration Cross-laminated timber (X-Lam). Berlin, Germany: Institut Bauen und Umwelt e.V. (IBU).
- The Aluminum Association (2014a). Environmental Product Declaration Primary aluminum ingot, Industry-average primary aluminum ingot manufactured in North America.
- The Aluminum Association (2014b). Environmental Product Declaration Secondary aluminum ingot, Industry-average secondary aluminum ingot manufactured in North America.
- The Aluminum Association (2014c). Environmental Product Declaration Cold-rolled aluminum, Industry-average cold-rolled aluminum manufactured in North America.
- The Aluminum Association (2014d). Environmental Product Declaration Hot-rolled aluminum, Industry-average hot-rolled aluminum manufactured in North America.
- The Aluminum Association (2014e). Environmental Product Declaration Extruded aluminum, Industry-average exctruded aluminum manufactured in North America.
- The Brick Development Association (2013). Environmental Product Declaration: BDA generic brick. UK: BRE Global Ltd.
- UPB AS (2016a). Environmental Product Declaration Precast concrete wall elements. Oslo, Norway: The Norwegian EPD Foundation.
- UPB AS (2016b). Environmental Product Declaration Precast concrete insulated wall elements. Oslo, Norway: The Norwegian EPD Foundation.
- UPB AS (2016c). Environmental Product Declaration Precast concrete columns. Oslo, Norway: The Norwegian EPD Foundation.
- UPB AS (2016d). Environmental Product Declaration Precast concrete beams. Oslo, Norway: The Norwegian EPD Foundation.
- UPB AS (2016e). Environmental Product Declaration Hollow core slabs. Oslo, Norway: The Norwegian EPD Foundation.
- WoodSolutions (2015a). Environmental Product Declaration Medium Density Fibreboard (MDF). New Zealand: The Australasian EPD[®] Programme Ltd.
- WoodSolutions (2015b). Environmental Product Declaration Plywood. New Zealand: The Australasian EPD[®] Programme Ltd.

- WoodSolutions (2015c). Environmental Product Declaration Particleboard. New Zealand: The Australasian EPD[®] Programme Ltd.
- WoodSolutions (2015d). Environmental Product Declaration Hardwood Timber. New Zealand: The Australasian EPD[®] Programme Ltd.
- Ziegel (2014). Environmental Product Declaration In Accordance with ISO14025 and EN15804 for Proof wall and ceiling bricks. Vienna, Austria: Bau EPD GmbH.